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I. Nonlinearity in Condensed Matter -- An Overview

In the last decade, paradigms of nonlinear science have become firmly established in
experimenial and theoretical approaches to condensed matter physics [1,2] - - as well
as, many other disciplines [3]. Most importantly, “nonlinear science” requires an in-
terdisciplinary and multifaceted approach -- analysis, computation and experiment.
Often the approach involves a new look at old problems, e.g.
o the synergistic use of computers.
o the widespread introduction of concepts such as “solitons,” “integrable systems,”
“topology,” “chaotic dynamical systems,” “pattern selection and function,” “non-
linear mode-reduction” and “collective coordirates.”
¢ the importance of “competing interactions” for inhomogeneity in space-time.
There are important complementary ideas such as: (i) order (e.g. solitons) arisin
from nonlinearity in many-particle systems and partial differential equations [4]; ang
(11) temporal disorder (e.g. chaos) resulting from nonlinearity even in fewparticle
systems [5. Combining such order and chaos is an important chellenge to modem
theory [6].

The[ basic noticns of ‘solitons” will be introduced here for incegrable systems in
one space dimension [4]:
Sine-Gordon equation
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Cubse Nonlinear Schrodinger equation
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Toda lattice equation
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The practical generalization of solitons to finite energy, long-lived structures is il-
lustrated below with topological solitons, clusters in the vicinity of a structural phase
transition (7], and vortex configurations in 2-dimensional easy-plane spin systems (sec-
tion [II). It is emphasized that “solitons” span both disciplines und physical scales, and
are often “generic" in that they are labelled by certain key physical ingredients rather
than specific contexts - - e.g. periodic potentials leading to the SG class of equation.

Turning to topical condensed matter/statistical physics contexts, these are very
numerous. [t is therefore more relevant te appreciate certain general themes which
have to be faced by each new application:



1. Soliton types in 1l-dimeasion for scalar fields are of 3 types -- “kinks,” “"pulses,”
and “breathers” (4].

2. Strict solitons (solutions of integrable equations) play a unifying role for most
(perhaps a.ll) exactly solvable systems in many-body, field theory and statistical
physics - - i** quantum 1- dimension or classical 2-dimension (or 1-space and 1-time).
Mappings between quantum solitons, Bethe Ansatz solutions, Baxter solutions,
Kac-Moody algebras, etc, are examples [§].

3. Strict solitons are rarely (if ever) of practical concern, although they may in some
circumstances be good starting points for perturbation techniques. Observation of
solitons and their physical characteristics become context and application specific
because of perturbations and fluctuations with respect to “bare” solitons. Impor-
tant examples include: impurities, external fields; damping; lattice discreteness:
dimensionality; thermal, quantum or critical fluctuations (important for statistical
mechanics, transport, nucleation, quantum tunneling, etc.). A good example is
provided by modeling of “poling” in piezoelectrics [9].

4. Competitions for ground states and excitations are especially pronounced in the

presence of nonlinearity, disorder, i nd low-dimensionality.

. Intrinsic inhomogeneous structure (“defects”) can often be classified (xf they are
topological) by, e.g., homotopy theory - - for instance in liquid cristals, IHe, crystal
defects. This is important because of their relevance to transport and relaxation
(10].

6. Intrinsically nonlinear defects play an important role in phase transitions of many
kinds - - first order (droplet nucleation), continuous (cluster dynamics), topological,
commensurate-incommensurate, multiphase equilibra, “universal” critical short-
range-order, etc. Structural phase transitions and incommensurate structures are
discussed briefly below.

. Low-dimensional magnets are good exampies of soliton contexts. Quasi-1-D sys-
tems (CsNiF3, TMMC, CsCoCl3, ..) have keen especially tractable and didactic
examples. Quasi-2-D materials (KoCuF4, RbCrCly, graphite intercalates...) are
increasingly studied in the context of vortices, domains, discommensurations. and
most recently high-temperature superconductors. Low-D magnets are considered
in section J.

8. Low-dimensional organic and organo-metaliic materials are also contexts where
solitons and nonlinear effects more generally are prevalent (11]. Thesc include
phenomena such as: broken symrmetry ground states (charge density, spin density,
superconducting, bond order, etc); competitions (leading to inhomogeneous ground
states); nonlinear excitations (especially self-trapped states, including polarons, im-
portant in physics, chemistry, biophysics). Some of these issues are introduced in
section 4.

9. Nonlinear, nonequilibrium phenomena are a growing focus in solid state and mate-
rials science, where “complexity” in space and/or time is as important as in urcas
such as hydrodynamics or plasmas. This field is reviewed in section 2.

(4]}

Structural phase transitions provide good examples in materials science for the
evolution of approaches with which to incorporate strongly nonlinear effects. During
the period 1970 - 1980 radical changes took place both experimentally and theoretically
introducing ideas of incomplete soft modes, central peaks and intrinsic clusters in
displacive structural phase transition materials. A one dimensional model (the p
four™ or “double well’ Hamiltonian) illustrates this [7):
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Here, we consider a unaxial ferrodistortive (spring constant C > 0) system with parti-
cles of mass m and displacement u; (from local equilibrium) moving in one-site doubly-
degenerate wells (A < 0. B > 0). In the so-called “displacive” regime (C 2 |A|) a
continuum approximation is valid leading to the -four equation describing the lattice
dynamics:

mug — 2 Cagu;, - |4ju + Bud = o,

where a is the lattice constant.

This equation has low-amplitude and high-amplitude “phonons” as solution (lim-
its of elliptic travelling waves). In addition it supports kinks (domain walls), soli-
tons and long-lived coherent breather-solitons. Attempts to linearize the equations of
motion (by “self-consistent” or “renormalized” phonon approximations) suppress the
nonlinearity: they can capture the best harmonic approximations of high- and low-
temperature phonons and suggest that there is a transition between those at a “soft”
mode temperature Ty. The inclusion of fully nonlinear kink solitons renders this soft-
ening incomplete and shows that it is accompanied by a “central peak” (i.e. scattenng
intensity around frequency w = 0). This is illustrated in Fig. 1.

The central peak narrows and grows as T — 0 corresponding to the density of
kinks — 0 and complete long-range order appearing. In dimensions greater than unity
a phase transition to long range order occurs at a finite temperature T. even for
short-range interactions. Again, however, T < Tp. We illustrate this situation with
results [4? on weakly-coupled chains of double-well- -potential particles, represertative
of anisotropic ferroelectrics (e.g. CsD9PQy4), Peierls-distorted chains (e.g. KCP), ete.
Here a mized phase of displacive behavior on-chain but order-disorder C» |A]} be-
tween chains occurs. and T, & Tg so that the 1-dimensional short-range-order regime
is enhanced and 2-dimensional crossover occurs only close to T,. The general scenano
of order-disorder-displacive crossover in double-well systems of general dimension can
be presented as in Fig. 2.

Commensurate-incommensurate phase transitions are now widely encountered (in
theory and experiment) in a large range of physical circumstances [12]|. The key physical
mgredxent is the occurrence of competing interactions. We argue in section 2 that these
are also a central concept for dynamical systems (showing “complexity” in cpace time)
quite generally. Here we describe purely static contexts of competing spatial scales.
The physical variable sensitive to the competition may be displacement, mass, spin,
charge-density. phase, rotation, pitch, etc. The physical contexts are equally diverse

- epitaxy. charge-density-waves, ANNNI magnets, ferroelectrics, crystal faceting, etc.

The competitions for length scale characteristically result in spatially inhomogc
neous thermodynamic phases. The appearance of homogenous commensurate regions in
-pace, separated by inhomogenous incoinmensurate segments (“discommensurations”)
15 typical. The density of discommensurations then — 0, as the incommensurate-
commmensurate phase transition is approached. eventually leaving a fully locked (homo-
geneous commensurate) pattern. This scenario is illustrated by a simple 1-dimensional
surface epitaxy model, after the style of Frenkel-Kontorova or Franck-van der Merwe,
with Hamiltonian [12):

{ D)
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Figure 1. Central peak forraation and anharmonic phonon softening in a 1-D ¢4 model
(see text).
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Figure 2. Cluster and anharmonic phonon regimes in displacive-order disorder ¢4
models.

Here, x5 is the displacement of the n-th particle (mass m) of the epitaxial layer moving
in a periodic substrate potential of strength V. There are two characteristic length
scales: (a) the natural epitaxial layer lattice periodicity, a, set by the harmonic inter-
particle spring C: and (b) the substrate periodicity, b. In general a and b can be
incommensurate (irrationally related). A discommensuration superlattice then takes
the srhematic form shown in Fig. 3 where 8 is a deviation relative to a particuiar
superiattice order: X = nbP + bf,/2r, with Qa = Pb, Q and P irrationally reiated
integers.

Important generalisations of the above discommensuration model include: effects of
a discrete lattice (13] (including “chaotic” discommensuration pinning, locked phases);
interactions between discommensuration lines (leading to structural transitions and
melting of discommensuration superlattices) {12]; dynamics in the presence of com-
peting interactions (pbasoa modes, hysteresis and metastability); and generalisations
to include multiple competing length scales and non-convez interparticle springs (14).
These last ingredients are becoming of direct concerr. in materials scieace applications
of competing interactions such asz martensite materials, polytypes, polymers, grain-
boundary structure.

II. Coherence and Chaos in Spatially Extended Condensed Matter Systems

The focus of dynamical systems research has now moved strongly towards spatially
eztended systems (6.8]. This natura]ly bnngs together ideas of pattern formation and
chaos - - varying degrees of “complexity” may occur in space or time or both, as is
experienced in many areas of the natural sciences, from astrophysics to biology. Our
particular concern is with examples from condensed matter physics which has some
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Figure 3. A discommensuration array in the Frenkel-Kontorova model: see text.

special advantages. In particular, these systems are frequently “bench-top” size and
concern materials and experiments which are well controlled. In addition, control of
geometry and dimensionality are novel, and questions of space-time complexity are of
direct practical interest for device performance, e.g. in Josephson transmission lines.
These considerations have lead us to study [6,8,15] chaos and coherence (usually
in time and space, respectively, but not exclusively) in a variety of nonlinear partial
differential equations modeling specific candensed matter materials and experimental
models thereof -- Josephson junctions and lines, pinned charge-density-waves, low-
dimenzional magnets, oscillating water tanks, etc. We also anticipate a rapid growth
in the appreciation of these issues for more traditional materials applications - - the
importance of space-time inhomogeneous structures for strength and response is gener-
ally recognized but there is a need for much greater unification and dynamical systems
approaches to complexity may provide this. [See, e.g., articles in “Competing Inter-
nctionis and Microstructures,” eds. R. LeSar, A. Bishop, R. Heffuer (Springer-Verlag

1088).

There a three separate (but merging) types of problems so far addressed in con-
lensed matter contexts:

1. Structural disorder and inhomogeneity in (classical) static Hamiltonian systems
with competing (incommensurate) interactions or periods. Such competitions oc-
cur in a large variety of solid state materials exhibiting commensurate-incommen-
surate phase transitions (12]. They are responsible for regular or irregular arrays
of “discommensurations” as ground states, for “devil's staircases” of locking tran-
sitions between commensurate uniform states, hysteretic dynamics, etc. {12,13].
Studies of multiple competing lengths [14] and of large-scale dynamics are impor-
tant and in their infancy.



2. Spare- and time-dependent (classical) systems corresponding to nonlinear partial
differential equations or coupled systems of nonlinear ordinary differential equa-
tions arise naturally as models of condensed matter. Driven, damped equations
such as the sine-Gordon and nonlinear Schrodinger systems have been particularly
well studied in various spatial dimensions and with various boundary conditions.
These provide excellent examples of mode excitation, nonlinear saturation, con-
version and competition (leading to complexities including temporal chaos). As
well as being close models of specific experimental situations, they have the ad-
vantage of being integrable in the absence of perturbations. Thus a tractable
nonlinear mode basis of strict solitons is available in which to project perturbed
flows. References [6,15] describe this scheme in detail for the periodic sine-Gordon
ring. Many of the lessons quantified by *this “near-integrable” approach extend to
far more general situations. Indeed it is increasingly appreciated that there are
typical ways that space-time attractors (either chaotic or as routes to chaos) are
manifested. In this regard, it is important to appreciate that there are several
approaches taken to study extended dynamical systems - - in addition to specific
(classes of ) p.d.e.'s, cellular automata [16] (various discretizations of p.d.e.'s) and
coupled "lattices” of low-dimensional maps [17] are also widely investigated. Most
importantly, synergetic mappings are gradually becoming apparent within and be-
tween these seemingly different approaches to space-time attractors. Furthermore,
there are additional mappings to higher dimensional effective Hamiltonians (with
time being replaced by an auxilliary space). These effective Hamiltonians exhibit
competing interactions [18]. Thus, the conceptual framework for “inhomogeneous”
space-time attractors is the same as for purely spatial chaos in (1). Competing
interactions are the key feature and spatial discommensurations become analogous
to space-time intermittency. Orderly temporal behavior is usually accompanied by
(higher symmetry) spatial pattern formation and irregular temporal behavior by
a breaking of that spatial symmetry. However, “chaos” is usually low-dimensional
because it is characterized by a small number of highly coherent (~soliton) struc-
tures moving irregularly in a sea of extended ( “radiation”) modes (which may be
active, slaved or heat-bath in character). The “solitons” become locked in phase
and amplitude when a higher symmetry spatial pattern stabilizes. A typical ex-
ample is shown in Fig. 4, where a period sine-Gordon ring is being driven by a
homogeneous ac-field with homogeneous damping. _

Since the number of p.d.e. studies of chaos continues to grow rapidly, we merely
include here a representative guide to the literature:

Recent studies include: sine-%}ordon-like systems with periodic [6,8,19] Neumann
(8] or absorbing (21] boundary conditions, including 2-D [22] cases and discrete
generalizations (8); nonlinear Schrodinger equations (8], including models of plas-
mas {23). bistable optical ring oscillators [§], coupled acoustic oscillators and surface
waves, and complex generalizations such as Landau-Ginzburg (8,24}, the Korteweg-
de Vries equation, Toda lattice and generalizations (25]; classical spin chains;
Kuromoto-Sivashinsky and similar equations for interface dynamics [6]; and finite
pole or theta-function representations [6,8]. Finally, we reemphasize the closely
related types of space-time compiexity observed in studies of coupled map lattices
[17] and of cellular automata [16].

An excellent cross-section of these studies, together with articles describing physical
systems being )investigated experimentally, is contained in the conference proceed-
it of Ref. [6].

antum Chaos” is described in detail in the lectures of GUTZWILLER. The
notion of studying Hamiltonian and dissipative quantum systems which have well-
defined classical limits is itself well-defined and of clear experimental




Figure 4. Space-time evolution for a periodic Sine-Gordon chain with damping edt (¢
= 0.2) and homogeneous ac-driving I' sin(wgt) (wq = 0.6). Evolution is shown for
approximately two periods of the driver with: (2) T' = 0.8, which results in perniodic
time evolution of a spatially period-1/2 pattern; and (b) [ = 1.0, which results in
chaotic kink-antikink motions, nearly repeating each driving period. The important
dynamics here is that of kink-antikink collisions mediated by certain phonons, resulting
in a slow diffusion of the center of mass as in dislocation slippage in metals (note the
ranges of (&) in cases (a) and (b)).



relevance. Furthermore, combining these problems with dynamical systems ap-
proaches, since they have in recent ycars become more widely recognized and ap-
preciated. is tempting. Several models motivated by solid state or statistical physics
are interesting in this regard. In particular spin problems have the advantage of a
finite manifold which makes computation of energy levels and wavefunctions very
controlled numerically. We have focused on two systems in detail: (i) a triangle of
J Heisenberg spins coupled antiferromagnetically ['26];

3
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and (ii) a single Heisenberg spin with easy-plane anisotropy and a periodically
pulsed magnetic field applied in the easy-plane [27].

H=A(5:)% —uBS: ) é(t-

Both examples '.ave the crucial advantages of being able to readily vary the “quan-

tumness” (h~ S~!) and the degree of non-integrability (in the first case by con-
trolling spin space symmetry ¢ and in the second via the magnetic field strength
B). The tunability of these parameters has lead us to identify new scaling and self-
similarity properties both in the distribution of energy levels and in the associated
wave functions. Details are contained in Refs. {26,27]. Evidently, a whole field of
new studies are available here, extending these kind of studies to many-particle sys-
tems (e.g. perturbing around exact soiiton-bearing or Bethe Ansatz models) and
including dissipation - - the combination of these two ingredients leads immediately
to questions of macroscopic quantum tunneling [28].

III. Nonlinearity and Magnetism

Magnets have provided examples of strong nonlinearity for many decades - - they pro-
vide numerous systems where we (at least believe we) have good microscopic descrip-
tions. Magnetic domain walls are as well studied as dislocations, and their structure
and dynamics are of immediate importance in coercive magnetic devices - - including
bubble devices studied until recently for their information storage potential. Domain
wall response to magnetic fields leaves much to be undersiood (excef! at low fields
where “particle’ like dynamics is often adequate) [29], and may provide good exam-
ples of longitudinal or transverse instabilities on propagation interiaces (30].

In the more recent developments of soliton literature, magnets have been important
for several reasons:

1) They provide numercus examples of exactly integrable solvable equations

- both classical (in1 + 1 and 2 + 0 dimensions) and quantum (1-dimensional). In-

deed the original Bethe problem (a S - n isotropic Heisenberg ferromagnetic chain and
the Onsager 2-dimensional Ising model can be mapped directly into soliton systerns).
Many generalizations (classical and quantum mechanical) have been explored in the
last decade [31.32], but a simple example, the classical ssotropic continuum Heisenberg
model in one space dimension, will serve to illustrate the mathematical beauty of these
systems:

{ere (32] the Hamiltonian for the spin field S(x.t) takes the form

9
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and the equation of motion is

oS g &5
ot T or?
Natural canonical variables are n = §? = cos # and q, where 3% = (1 - p- 2)3 cos q(q

= o). In these variables it is evident that the system is nonlinear and that there is no
simple decomposition into kinetic and potenual energy:

1 d d
Hilph (o)) = [ dr (1= (£F+ (1=}

The exact integrability of this system follows from the identification of a “Lax-pair”
(L.M) representation for the spin variables [32]:

5=.S—'x&'=(;1_5;)
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The operators L and M are linear and non-selfadjoint, and operate in a _space of de-

pendent 2 x 2 matrices. [t is straxghford to include a field term Hy xS by a gauge
transformation. Stnctly speaking, "decaying” boundary conditions are required, viz.

1:1'_',",0 S(x.t) = ¢°. A similar structure for periodic boundary conditions is however

possible.
Following the procedures of inverse scattering theory [4], an associated linear eigen-
value problem can be identified,

Ly = Ay
du
=1
g =M
where the spectrum {A} has the remarkable property of being time mvanant The
spectrum comprises both discrete («~ “solit.n”) and continuum (+~ “magnon”) com-

ponents. Asymptotic scaicering data can be evolved according to the above prescrip-
tion and the inverse scep (the Gel'fand-Levitan-Marchenko integral equation) gives
S(x.t) from the evolved data. In this way, arbitrary initial data can be decom osed
into “nonlinear normal modes” and followed in tirne. Further, it is possible to len-
tify new canonical variables, P()), Q(A). from the scattering data, which are natural
action-angle variables:

10
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This action-angle set is extremely conveniant as a starting point to discuss statisti-
cal mechanics or quantization, as can be seen by the “separable” form that conserved
quantities take. For example, the Hamiltonian becomes

% A
H=-4/ A P()) A +4;(Fﬁ+'}3§)‘

-0

where P is complex conjugate. The first term has the form of continuum (magnon)
states: defining energy s(\) = 4A? and momentum m(A) = 2], we have () = 7r2(A).
The second term is the soliton con.ribution (in rcal space these are pulse structures

33)): defining P, = A, e~ i%/4 itis possible toe. -ess the energy as e = &+ sin?(r/4),
g gy mi

where T, and nj, are the lineer- and z-component of angular-momentum, respectively.

As in section I, we emphasize that the apparent separability of H is somewhat
deceptive. This is a nonlinear system and modes do interact, bat in such integrable
mod.ls the interaction is purely via reciprocal phase (space)-shifts. Nevertheless, these
phase shifts are responsible for changes in density-of-states and these restrictions on
available phase space are of crucial importance, precisely as in Bethe Ansatz quantura
schemes.

2) Many reallow-dimensional magnetic materials (chain and layer-like) exist [34.35).
They can be well-synthesized and controlled measurements of thermodynamic and
scaviering properties can he made. For this reason, linear theories of magnets have
long found good experimental test-beds [34], and this has naturally also become true
of soliton theories. Because the material basis is sovnd, low-dimensional magnets have
also served to emphasize an important salutory lesson for solitons in real materials:
the soliton paradigm is intended to be a guide to an improved starting point for theory
and experimental design/interpretation. It is not a niversal panacea and each context
lemands attention to specific important perturbations. Thus, in the case of easy-plane
ferromagnetic chains (e.g. CsNiF3), it is rather clear that a sine-Gordon-like system
will govern in-plane dynamics in the presence of an in-plane magnetic field. If we take
the Hamiltcnian [36).

H=-J% SnSna+AS (59 -gus B*S. SE
n n n
with dynamics

St = {H.5)

and linearize in the out-of-plane spin angle @, then we find immediately that

2 2
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where ¢ is the in-plene spin angle, cg = 2.~\Ja252, u.'g = 2Agu;0S, a is a lattice con-
stant, and w have assumed that a continuum (z) description is valid. This sine-Gordon
approxination is very well documented and is indeed a good playground for testing
sine-Gordon statistical mechanics -- experimental measurements of specific heat and
inejastic neutron scattering have been especially careful [35]. However, while qualita-
tive agreement with sine-Gordon theory was initially appealing, it has taken several
vears to appreciate that sibtler effects play very important roﬁes too. For example,
cential peaks in dynamic structure factors may have kink soliton contributions but (de-
pending on which correlation is measured), essentially linear multimagnon and bound
multimagnon ( “breather”) contributions are also major components. Again, lineariz-
ing in 8 is a very poor approximation in classical dynamics - - nonlinear out-of-plane
effects produce binding and even repulsion during kink-antikink collision rather than
sine-Gordon transmission [37]. This appears to be somewhat compensated by quantum
effects which may act to inhibii motions out of a zero-point plane. However, the com-
bined effects of quantization and nonlinear out-of-plane fluctuations have even now not
been fully resolved - - especially for dynamics. A very similar situation applies to other
easy-plane ferromagnets (e.g. CHAB, where quantum Monte Carlo even questions
the validity of the assumed Hamiltonian [38]) and to easy-plane antiferroma<nets (e.g.
TMMC) (39]. Figure 5 illustrated “breather” formation in the case of a kink-antikink
collision in a classical antiferromagnetic model.

Two-dimensional megnets are an equally rich hunting ground for nonlinear exci-
tations. The prospects for studying dynamics associated with the Kostetlitz-Thouless
transition are beginning to look especially appealing, with controlled inelastic neutron
scattering experimeats being made on several layered materials [40). (e.g. K,CuFy,
RboCrCly, BaCo2(AsO4)2) Phenomenological theories, based on ideal gases of vortex
excitatiors moving in a screening environment of bound vortex-antivortex pairs [41],
compare well with numerical simulations and have many of the qualitative features seen
experimentally. Other excellent two-dimensional magnets include graphite intercalated
with m.agnetic icas (e.g. CoCly) and surface layers.

Finaﬁy, we reemphasize the prospects for low-dimensic..al magnets as experimen-
tal environments in which to study coherence and chaos (Section !I); and note the
relations to stoichiometric Cu-O layered materials which erhibit high-temperature su-
perconductivity under doping.

IV. Solitons and Conducting Polymers

Conjugated polymers such as suitably syathesized polyacetylene have emerged as pro-
totypes of an intriguing class of “synthetic m~.als" -- synthetic materials with metallic
properties (in this case, nearmetallic levels of conductivity upen sufficient doping).
Not surprisingly, the vast body of research on this :lass olymatrials is driven by the
needs for new syntheses and the potential for applications (for example in batteries
or nonlinear optics) (11]. However, theoretical modeling of the (by now) many ex-
amples of conducting polymers has lead 10 a rich interﬁisciplinuy story in its own
right. First, the fleld has provided a hasis for interdisciplinary rollaborations be-
tween field theorists, solid state theorists and quantum chemists. Second. soliton
ideay (although at first sight quite straightforward - - see helow) have found exotic
variations - - includins >nnections to exactly solvable field theories and to fraction-
ally charged species. eed, all the "simple” solitons mentioned in Section I (kinks,
pulses and breathers) nave found a home in polynacetylene mode!s. Third, these ma-
terials are important examples of the increasingly urgent search for novel materials
and they emphasize our need to explore mesoscale materials, for which current elec-
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Figure 5. Breather formation following so'iton-antisoliton collision in an easy-plane
ferromagnet with in-plane magnetic field.
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tronic structure theory is frequently poorly prepared. In these cases we are confronted
with material sizes which are intermediate between small polyenes (the realm of quan-
tum chemistry) and macroscopic semiconductors (the realm of solid state). Schemes
applicable in the two limits have to be rethonghi in the mesoscale regime. Fourth, low-
dimensionality and disorder introduce competitions for ground states and excitations.
Conducting polymers represent a member of a growing class of such environments,
where collective ground states are in sensitive competitions - - spin-and-charge-density,
bond-order, superconducting ferroelectric, etc. Ultimately, conducting polymers may
be bes. thought of as semiconductors but with disorder on many length scales and with
extreme anisotropies. [n this regard also they correspond to a new class of materials for
experimentalists and theorists. The primary charge carriers are probably “polaronic”
in character but the influences of disorder, anisotropy, electron-electron interactions,
interchain coupling, etc., have yet to be fully understood.

For a review of the current state of the evolving art, the reader is referred to
[11,42,43]. For the present purposes, it is sufficient to briefly indicate how models of
1solated polyecetylene chaing have provided natural examples of kinks (domain walls),
pulses (polarons) and breathers (anharmonic phonon wave-packets) -- in ideal poly-
acetylene it is now believed that interchain coupling is very important. To this end we
restrict ourselves to the simplest model of Su-Schrieffer-Heeger for trans-polyacetylene
with purely electron-phonon coupling [14j:

H= - z(t""""" C:_'_.‘,Cn‘, + h.c)

K . . 1 -

tg 2 Unpr =Un)? 45 MY Un?.
n n

Here M is the mass of C-H unit, C} is a creation operator for a m-electron at the n-th

site, U, is the displacement of the n-th C-H unit from an equal bond length config-

uration, and K is the spring constant between neighboring C-H units. The transfer
matrix element incorporates electron-phonon coupling in the form

thetn =t —a(Up 0 =Un),

where a i1 the coupling constant. Direct studies of the adiaba.ic grqund state show
that the equal bond length configuration is unstable towards unitorm dimerization
Un = £ (-1)* Up = £ Uy. This is referred to as a Peierls dimenzation since the
7-electron band is initially half-filled. This “spontaneous brokep symmetry ground
state” is accompanied by a gap appewring at the Fermi level. Both the size of the
dimerization and of the electronic gap are determined by a.

[n the limit of weak coupling, a continuum approximation is valid in terms of the

staggered order parameter U(y) and an electronic spectrum linearized about + kg
Then [45.46]

“Q A N/ v
q = Z/dU {é Ay) - 1Vrli(y) % + VeV (y) __a:,”)

+ YU (V) + Viyuiy)]},

with 4(y) and g(l\l/a)& Cly)g = -lu(u/.\lﬂ. ..-5 = 4K/M, and (U(y), V(y)) the spin

or electronic Reld. Variation of H with respect to U, V and A yields the following set
of equations to be solved self-consistently
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o, OO,
En Un(w) = =iV 28 & Ay Va(y)

avn( Yy)

El'l Vﬂ(y) = _'.VF 0y

+ A(y)nly)

2
Ay) = =3 (Vr()nly) + Ua(y)Va(w)} .
“Q n.s

where prime indicates summation up to the Fermi level. These equations have the
form of a Dirac-like equation in a y-dependent potential A(y) with a subsidiary “gap”
condition. Their solutions represent all possible static adiabatic solutions to the Su-
Schrieffer-Heeger model. Remarkably, all such solutions can be obtained ezactly and
constructively using inverse scattering techniques [46(} Furthermore, this exactly solv-
able problem is ezactly equivalent to a popular field theory model, the Gross-Neveu
model of quadratically coupled, massless fermions. The mos* general Gross-Neveu
model Lagrangian includes fermions with N “flavors:”

IV

. 0
L =Y 39y (i, a—)p‘"’(y)
a=1} v
A
+l 2 sla) (a) 2
596y (3, 2w

a=,

(See Ref. [46] for notation).

The polyacetylene case corresponds to N = 2 (£ kg electrons), but N =1 and 4
have also found solid state analogues (46,47]. In addition new solvable models have
been motivated by solid state materials (e.g. ordered A-B alloys and cis-polyacetylene
(46.48)) which have lead to new solvable Eeld theories being identified. Finally, the
incommensurate Peierls model is equivalent to the N = 2 chiral Gross-Neveu model
(46).

l'I'he availability of these exactly solvable models is of course important for many
benchmark calculations - - for example of optical absorption [49] or polaronic masses.
These are especially interesting in fleld theory because they provide explicit examples
of “dynamical mass generatiou” (the equivalent of the spontaneous dimerization --
i.e.. gap formation). and of “negative energy sea anomalies." These anomalies include
the exotic notion of “fractionally charged solitons,” and are the consequences of phase
shiffts su[ﬁ'ei'ed by the valence band extended electronic states in the presence of soliton
defects [49).

We limit ourselves here to a description of the elementary “soliton” excitations
supported by the N = 2 Gross-Neveu mocel [46]. In the language of our polyacetylene
model these appear as:

(1) kinks or domain walls with

Y = Yo

o
where £ = Vg /Jg. a coherence length (~3-10 a in polyacetylene). In addition to phase
shifting of valence (and conducting) band states, the kink produces another localized

rlectronic state exactly at the middle of the electr-nic energy gap, i.e. at the Ferm
level (this a consequence of an exact electron-heie symmetry).

Ap(y) = £ tanh
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(b) polarons and bipolarons with:

Aply) = Ag = KyVF {tanh Ko(y + yo) — tanh Ko(y — yo)} .

where 2Kgyg = tanh~!(KoVr/An). The polaron interpolates between pure dimer-
ization (w9 — ) and an infinitely separated KIX pair (wg — 0). Since the polaron
has the form of a kink-antikink pair. it is not surprising that the associated electronic
spectrum contains two states localized in the gap, symmetrically distributed about the
Fermi level - - at + (Ag—I\'gV%)’}.

The state of charge (and spin) of the above intrinsic defect states is determined by
the occupation of the localized gap states. Possible kinks, polarons and bipnlarons are
illustrated in Fig. 6.

Importantly, while kink and polaron states are possible in trans-polyacetylene,
only polarons and bipolarons are allowed in cis-polyacetylene. This distinction oc-
curs because the degenerate ground states in trans-polvacetylene are available in cis-
polyacetylene, where an additinnal term in the Hamiltonian breaks the degeneracy.
This results in a confinement of kink-antikink pairs so that free kinks are not possible
(46]. The situation is easily understood in chemical terms as shown in Fig. 6, where
single and double bonds correspond to long and short CH near-neighbor separations.

Since most conducting polymers presently synthesized l.uve ?a.llen into the cis-
polyacetylene category (a unique ground state and a metastable second configuration),
experimental and theoretical attention has moved strongly toward their identification.
Combinations of optical absorption, ESR, doping-induced spectroscopy and photoex-
citation studies, now strongly support their presence Lll]. While it is likely that they
play a major role in transport, a great deal of research remains to elucidate details.

We conclude this section with very brief remarks on adiabdatic dynamics, which al-
lows ug to introduce the final “soliton™ excitation, referred to above, namely a breather.
These appear as cokerent anharmonic phonon packets with associa‘ed oscillatory elec-
tronic energy levels. They have been proposed as important features of kink propaga-
tion and photoexcitation (across the ground state gap or in the presence of localized
gap states due to polarons or extrinsic impurities) r.')O] As one example, consider
photoexcitation of an electron from the top of the valence band to the bottom of the
conduction band within the Su-Schrieffer-Heeger model. As shown in Fig. 7, this
initial condition very rapidly (after ~10~13 sec) evolves into a separating kink and
antikink and a localized envelope structure oscillating periodically in time (<ee Fig.
7(b). The kink and antikink separate at a mazimum velocity where their combined
kinetic energy is ~0.2 Qg [50]. The oscillatory mode can be described very accurately
in terms of "soliton” (breather) solutions of a nonlinear Schrodinger equation. These
have the form (30|

A(z.t) = Aol + 6(=2.t)]

o(x,t) = eVBsech (e V12 r/€) cos(l - %sz)ug t)
+ g e?sech? (¢ V12 1/50){% cos{2(1 ~ ;1-,52)1..13 t| -1}

op ==\
and energy
213

EB =39 - :'“ - g :72 +0(€4)l '
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Figure 6. Lattice deformations and electronic levels corresponding to polarons and
bipolarons in cis- and trans-polyacetylenc.
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Figure 7. Breather formation following photoexcitation in a model of trans-polyacetylene.
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where ¢ is a small parameter. Semiclassical quantization of these breathers gives an
energy spectrum [50)

2,2

Eg:nug [1—LdR

= 37 n? -+-o(n"‘)] (n integer)

which shows that the breathers should be viewed as phonon bound states. The electron
spectrum accompanying the breathing mode is dominated by two localized gap states
(as in the polaron spectrum of Fig. 6) oscillating periodically to the gap edge and
deeply into the gap [50]. They are expected to yield optical absorption signatures with
absorption peaks near the band edge and associated bleaching of interband absorption,
however this involves calculations beyond the adiabatic limit which are described in
[31). Picosecond resolved photo induced photoabsorption experiments [52] do indeed
show such features but many decay channels are possible and have yet to be resolved
(interchain excitons versus on-chain charge separation, “hot” solitons, A, correlation
states, etc.).

Note that the electronic occupation of the breathing localized levels is neurral (lower
level doubly occupied and upper level unoccupied). C%'xemica.lly, this is a “zwitterion”
intermediate species. Similar “breathing modes” (with various electronic occupations)
have now been found to be extremely typical in this class of models - - examples include
cis-polyacetylene, A-B polymers, polyyne chains, as well as photoexcitation in the pres-
ence of polarons and extrinsic impurities. They are essentially always a consequence
of the anharmonic lattice dynamics resulting from electron-phonon coupling.
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